

Form Tapping

Form Tapping Leader

TAP TERMINOLOGY

Threaded Body:

The portion of the tap where the threads have been ground in. This is the part of the tap that does all of the work.

Neck:

A section of reduced diameter found between the threaded body and the shank. This allows easy flow of coolant or oil to the threaded body and any clearance required for longer parts.

Shank:

The portion of the tap by which it is held and driven.

Square:

Four driving flats parallel to the shank. For location purposes, one of the flats are ground longer than the three others.

TAP NOMENCLATURE

HOW TO READ A TAP DESCRIPTION

Basic tap descriptions are mostly universal across the industry

- + Basic descriptions are comprised of 5 components
 - + Size
 - + Pitch
 - + Pitch Diameter Limits
 - + Fluting
 - + Chamfer Style

1/4-28 H7 3FL SPPT P

Size:

- · References the basic major diameter of the tap
- · This can be expressed in
 - Inch
 - Fractions
 - Machine Screw Size
 - Metric

1/4-28 H7 3FL SPPT P

Pitch:

 References the distance from one thread to the next. This is expressed in the number of threads per inch.

1/4-28 H7 3FL SPPT P

Pitch Diameter Limits:

- + References how far above or below the basic pitch diameter the tap is
 - + Also known as the "H" limit

HOW TO READ A TAP DESCRIPTION (CONT.)

1/4-28 H7 3FL SPPT P

Fluting:

- + References how many flutes are on the tap and what style they are
 - + For example:
 - + 3FL = 3 Straight Flutes
 - + 3FL SPPT = 3 Flutes with Spiral Points
 - + 3SPFL = 3 Spiral Flutes

1/4-28 H7 3FL SPPT(P)

Chamfer Style:

+ References how what kind of chamfer is on the tap

For example:

$$B = Bottom$$

$$P = Plug$$

HOW DOES FORMING WORK?

BORE DIA.

FINISHED THREAD WITH (RABBIT

MINOR DIAMETER OF INTERNAL THREAD

HOLE PREP

HOLE SIZE FORMULAS

Formula For Obtaining Tap Drill Sizes for Cutting Taps

*Drilled Hole Size (inches) = Basic Major Dia. of thread (Inch)

- .0130 X

Percentage of Full Thread No. of Threads per Inch

*Drilled Hole Sizes (mm)

= Basic Major Dia. of thread (mm) Percentage of Full Thread x mm Pitch 76.98

Formula For Obtaining Tap Drill Sizes for Thread Forming Taps

*Drilled Hole Size (inches) Basic Major Dia. of thread (Inch)

- .0068 X

Percentage of Full Thread No. of Threads per Inch

*Drilled Hole Size (mm) Basic Major Dia. of thread (mm) Percentage of Full Thread x mm Pitch 147.06

Formula For Obtaining Percentage Of Full Thread For Other Drill sizes

Percentage of Full Thread

No. of Threads per inch

X

Basic Major Dia.
Of Thread (Inch)

Drill Hole
Size (inch)

.0130

Percentage of Full Thread

= 76.98 Pitch (mm) Χ

(Basic Major Dia

Drill Hole Size

CHAMFER

Minor Diameter

BASIC 10-24 U.N.C. THREAD HEIGHT .02706 CLASS 2B TOL= .0043

Hole Size Ratio

CMD Effects

Gage Limits

Nominal Pitch Diameter (basis)

H-limits

Speeds

Material

1108-1211

1212-1215

1006-1017 1018-1023

1024-1026

1513-1514

4130-4150 4340-6150

8630-8740

300 Series

400 Series

15-5PH - 17-4PH

PH13-8 - PH15-7

Inco 625,718, X750

M252, Rene 41

Waspaloy

Aluminum

Titanium

Leaded Brass

Brass, Bronze

Beryllium Copper

440-501

A286

11L17-12L14

Surfac	e Ft	5	10	15	20	25	30	35	40	50	60	70	80	90	100	120	130	150
Tap Si	ze						Revo	lutions	s per M	inute (RPM)							
0	.0600	318	637	955	1275	1590	1910	2230	2545	3185	3820	4455	5095	5790	6365	7640	8275	9550
1	.0730	261	523	785	1045	1310	1570	1830	2095	2615	3140	3665	4135	4710	5230	6280	6800	7850
2	.0860	222	444	865	890	1110	1330	1555	1775	2220	2665	3110	3555	3995	4440	5330	5776	6660
3	.0990	193	385	580	770	965	1155	1350	1545	1930	2315	2700	3090	3470	3860	4630	5015	5790
4	.1120	171	341	510	630	850	1025	1195	1365	1705	2045	2390	2730	3070	3410	4090	4435	5115
5	.1250	153	306	460	610	765	915	1070	1220	1530	1835	2140	2445	2750	3055	3665	3970	4585
6	.1380	138	276	415	555	690	830	970	1105	1385	1660	1935	2315	2490	2765	3320	3595	4150
8	.1640	116	233	350	465	580	700	815	930	1165	1395	1630	1865	2095	2330	2795	3030	3495
10	.1900	100	201	300	400	500	605	705	805	1005	1205	1405	1610	1810	2010	2410	2615	3015
12	.2160	88	177	265	355	440	530	620	705	885	1060	1240	1415	1590	1770	2120	2300	2650
1/4	.2500	76	153	230	305	380	460	535	610	765	915	1070	1220	1375	1530	1835	1985	2230
5/16	.3125	61	122	185	245	305	365	425	490	610	735	855	980	1100	1220	1465	1590	1835
3/8	.3750	51	102	155	205	255	305	355	410	510	610	715	815	915	1020	1220	1325	1530
7/16	.4375	44	87	130	175	220	260	305	350	435	525	610	700	785	875	1050	1135	1310
1/2	.5000	38	76	115	155	190	230	270	305	380	460	535	610	690	765	915	995	1145
9/16	.5625	34	68	100	135	170	205	240	270	340	405	475	545	610	680	815	885	1020
5/8	.6250	31	61	90	125	155	185	215	245	305	365	430	490	550	610	735	795	915
3/4	.7500	25	51	75	100	125	155	180	205	225	305	355	410	460	510	610	660	765
7/8	.8750	23	44	66	87	109	131	153	175	219	262	306	349	392	438	526	585	655
1	1.0000	19	38	57	76	95	115	134	153	191	229	267	306	344	382	458	497	573
Pipe 7	Гар Size																	
1/8		47	94	141	189	236	282	329	384	470	565	660	752	847	942	1130	1222	1410
1/4		35	71	106	141	177	212	248	283	354	425	495	566	638	708	850	921	1062
3/8		28	57	85	113	141	170	198	227	284	340	395	455	512	567	682	740	850
1/2		23	45	68	91	114	136	159	182	227	272	318	363	409	455	548	592	682
3/4		18	36	55	73	91	109	127	145	182	218	255	291	327	374	437	473	556
1"		15	29	44	58	73	88	102	116	145	175	204	233	262	292	350	378	436
1 1/4		12	23	35	46	58	70	81	93	115	138	162	185	208	231	277	300	347
1 1/2		10	20	30	40	50	60	70	80	100	120	140	160	180	200	241	262	302
2"		8	16	24	32	40	48	56	64	80	96	112	128	145	161	193	209	241

Condition:

Hardness (HB)

100-150

150-200

200-250

100-125

125-175

175-225

225-275

175-225

225-275

275-325

135-185

185-275

275-325

150-200

150-200

275-325

260-300

250-300

325-375

300-350

100-150

150-200

200-250

Condition

HR,A

HR,A,N,CD

N,CD

HR,A,N,CD

HR,A,N,CD

HR,N,CD

CD

HR,A,N,CD

N,CD,Q and T

N,Q and T

Α

A,CD

Q and T

Α

Α ST

ST

ST

ST

CD,ST and A

A

A,CD

A,CD

A,CD

A Annealed CD Cold drawn

Precipitation hardened H

HR Hot rolled Normalized

Q and T Quenched and tempered

ST Solution treated

Solution treated and aged ST and A

Threads per inch

Surface Feet per Minute

90

90

100

70

60

50

40

50

40

25

50

40

25

30

30

15

12

12

8

150

15

150

100

50

16-24 26-up

120

130

140

100

90

70

60

70

60

40

70

60

40

50

50

25

15

15

10

200+

20

200

150

80

8-15

60

60

70

50

45

40

30

40

30

15

40

30

15

20

20

10

8

8

6

100

10

100

80

40

HB Brinell hardness number

Formula:

RPM = 3.82 x Surface feet per Minute Diameter

Metric sizes---apply the formula

Metalforming taps (Jarflos) may be run at 1 1/2 to 2 times faster than cutting taps.

Coolant

Straight Oils

ADVANTAGES

Excellent lubricity, good rust protection and sump life; easy maintenance; rancid resistance

DISADVANTAGES

Poor heat dissipation; increased risk of fire; limited to low-speed cutting

Soluable oils

Good lubrication; improved cooling capacity; limited to light and medium-duty applications

More susceptible to rust problems and bacterial growth; tramp-oil and evaporation losses

Synthetics

Excellent microbial control and rancid resistance; relatively nontoxic; good cooling qualities; easy maintenance; long service life; heavy-duty cutting

Reduced lubricity; may cause misting, foaming and dermatitis; may emulsify tramp oil; easily contaminated by other machine fluids

Semi-Synthetics

Good microbial control and rancid resistance; relatively nontoxic; superior cutting qualities; easy maintenance; long service life

Water hardness affects stability; may emulsify tramp oil; easily contaminated by other machine fluids

Trouble Shooting

Trouble Shooting

CONTACT

